Revision 'Must Know' Checklist: Y11 Maths Higher Tier (Upper)

Below is a checklist of everything you must know to be successful by the end of this year.

	Number		Algebra		Geometry and Measures		Ratio and Proportion		Statistics and Probability		
o Calc	culate the upper and	0	Understand and use the	0	Perform speed, distance,	0	Recognise when values are	0	Construct and interpret		
low	ers bounds of numbers		laws of indices.		time, and calculations		in direct proportion by		grouped frequency tables.		
give	en to varying degrees of	0	Evaluate & simplify	0	Complete compound		reference to the graph form	0	To construct frequency		
accı	uracy, include whole		expressions with negative		measures calculations		and use a graph to find the		polygons.		
nun	nbers, decimal places,		indices with numerical		(Density, Mass & Volume,		value of k in y=kx.	0	Estimate the mean with		
and	significant figures.		bases.		Pressure, Force & Area).	0	Recognise when values are		grouped data. Understand		
o Use	inequality notation to	0	solve equations by changing	0	For a non-linear distance-		in inverse proportion by		why it is an estimate.		
spe	cify an error interval due		base.		time graph, estimate the		reference to the graph form	0	Find the interval which		
to to	runcation or rounding	0	Expand the product of more		speed at one point in time,	0	Solve problems involving		contains the median and		
o find	where the upper and		than two linear expressions,		from the tangent, and the		direct proportion or inverse		the modal class.		
low	er bound of a given		triple brackets.		average speed over several		proportion with squares,	0	To create scatter graphs,		
calc	ulation agree.	0	Factorise quadratic		seconds by finding the		cubes, or other		describe correlation draw		
o Und	derstand sets of numbers		expressions of the form		gradient of the chord.		powers/roots of another		lines of best fit, and		
o Sim	plify surds and expand		ax²+bx+c,	0	Draw a linear velocity—time		quantity, include using k to		estimate.		
sing	gle brackets with surds.	0	Factorise the special case of		graph (of individual		find another value.	0	To explain why some		
o Rati	ionalise the		the difference of two		sections) and find speed,	0	Relate algebraic solutions to		predictions may be		
den	ominator using the		squares.		time, acceleration, distance		graphical representation of		unreliable		
con	jugate	0	Change the subject of a		using enclosed areas by		the equations	0	Produce line graphs.		
o Und	derstand the difference		formula, including cases		counting squares or using	0	Perform calculations with	0	Construct and interpret		
betv	ween combinations and		where the subject is on		areas of trapezia,		ratio & fractions		time-series graphs,		
peri	mutations		both sides of the original		rectangles, and triangles.				comment on trends		
o Kno	w and use the product		formula, or involving	0	Represent vectors,			0	Understand what is meant		
rule	e for counting		fractions and small powers		combinations of vectors and				by a sample, a population,		
o Link	understanding of		of the subject		scalar multiples in the plane				and a census.		
com	nbinations to calculating	0	Solve linear equations that		pictorially.			0	Understand how different		
prol	bability		involve fractions	0	Calculate the sum of two				sample sizes may affect the		
o Mul	ltiply and divide	0	Recognise common factors		vectors, the difference of				reliability of conclusions		
frac	tions, including mixed		in algebraic fractions and		two vectors and a scalar				drawn.		
nun	nbers.		simplify algebraic fractions.		multiple of a vector using			0	Construct and interpret		
o Add	I and subtract fractions,	0	Apply skills in factorising		column vectors)				cumulative frequency		
incl	uding mixed numbers.		quadratics to simplify	0	To understand the				tables. Construct and		
o Find	d a percentage of a		algebraic fractions.		requirements for parallel				interpret the		
	ntity.	0	Multiply and divide		vectors				graphs/diagrams from		
	culate the value of profit		algebraic fractions.	0	Solve geometric problems in				tables		
or lo	OSS.		-		2D where vectors are			0	Produce box plots from raw		
					divided in a given ratio				data and when given		

- Calculate Percentage change and percentage profit or loss.
- Compound and simple interest.
- Find the number of compounds given the investment and the final amount.
- Calculate original cost after a percentage increase or decrease (reverse percentage calculations).
- o Linear sequences.
- o Quadratic sequences.
- o Find the common ratio r in geometric sequences.
- Convert between standard form and ordinary form
- Perform reverse mean calculations.

0

- Add and subtract algebraic fractions with different denominators.
- Plot graphs of simple cubic functions using tables of values, including finding solutions to cubic equations
- Plot graphs of the reciprocal function 1/x with x ≠ 0 using tables of values.
- o find the equation of a line in the form y =mx+ c
- Find the equation of a parallel and perpendicular line that goes through a given point in the form y = mx+c
- Find the equation of a line from two points & the equation of a perpendicular line given a third point
- Form and solve linear and quadratic equations and inequalities, interpreting the solution in the context of the problem where appropriate.
- Write a quadratic in completing the square form and use this skill to solve quadratic equations.
- Understand how to define a function.
- Use function notation and find outputs given inputs.

- Prove that or more vectors lie on a straight line
- Recognise the difference between vector problems in which one ratio is unknown and two ratios are unknown
- Solve vector questions with two ratios missing, using simultaneous equations, and equating coefficients
- To identify and use alternate angles, corresponding angles, and co-interior angles
- To understand how to calculate the interior and exterior angle in a polygon
- Use Pythagoras' Theorem to solve problems in 3D configurations.
- Calculate the length of a diagonal of a cuboid.
- Use the trigonometric ratios to solve missing lengths and angle problems with rightangled triangles.
- Find angles of elevation and depression
- Use trigonometry in 3D, find the angle between a line and a plane.
- Understand similarity of triangles and of other shapes.
- Prove that two shapes are similar by showing that all

quartiles, median and identify any outliers.

- Compare data sets using the median and interquartile range.
- Construct a histogram by calculating frequency density.
- Interpret histograms by estimating the number of people in a given interval.
- Complete a table knowing the sum of the probabilities of all outcomes is 1. Use 1 – p as the probability of an event not occurring.
- Estimate the number of times an event will occur, given the probability and the number of trials
- Find the probability of successive events, such as several throws of a single dice.
- Draw and find probabilities from a probability tree diagram based on given information with replacement.
- Draw and use a tree diagram to calculate conditional probabilities without replacement.
- Construct probability trees using algebraic expressions

- For two functions f(x) and g(x), find composite functions such as gf(x)
- Solve equations with composite functions
- Know that f –1(x) refers to the inverse function.
- Find the inverse of a linear function.
- Use completing the square to sketch quadratic functions and to identify the coordinates of a turning point.
- Investigate the effect of applying the transformations of y = f(x)+a & y = f(x+a) for linear, quadratic, cubic functions
- Apply to the graph of y =

 f(x) the transformations y =

 af(x), y = f(ax) y = -f(x), y =

 f(-x), for linear, quadratic,

 cubic functions
- Apply single transformations to curves including trig functions to find the new coordinates of given points.
- Solve two linear simultaneous equations by elimination.
- Set up and solve a pair of linear simultaneous equations in two variables,

- corresponding angles are equal in size and/or lengths of sides are in the same ratio/one is an enlargement of the other, giving the scale factor.
- Know the relationships between linear, area and volume scale factors of mathematically similar shapes and solids.
- Find missing lengths, areas and volumes in similar 3D solids using scale factors
- Use conditions of congruency to prove congruent triangles.
- Recognise when and understand how to apply the sine and cosine rules
- Solve problems with bearings by using the sine and cosine rule.
- Recognise, sketch, and transform graphs of the trigonometric functions (in degrees)
- Know the exact values of sin θ and $\cos \theta$ and $\tan \theta$ for θ = 0°, 30°, 45°, 60° and 90° and exact value and find them from graphs $y = \sin x$, $y = \cos x$ and $y = \tan x$ for angles of any size
- Use the formulae for volume and surface area of

to represent conditional probability

- Draw and find probabilities from Venn diagrams using union, intersection, compliment and given that notation and combined set notation.
- Work out probabilities from Venn diagrams to represent real-life situations and 'abstract' sets of numbers/values, such as sets of prime and even number.

including to represent a
situation.
Interpret the solution in
context of the problem.
Draw circles, centre the

0

the

- origin, equation x2+ y2 = r2.
 Solve simultaneous equations graphically, giving the intersection points of a given straight line with a circle
- Find the equation of a tangent to a circle at a given point, by finding the gradient of the radius perpendicular to it.
- By writing the denominator in terms of its prime factors, decide whether fractions can be converted to recurring or terminating decimals. Convert a fraction to a recurring decimal.
- Solve 'Show that' and proof questions using consecutive integers (n, n + 1), squares a2, b2, even numbers 2n, odd numbers 2n +1
- Understand iteration is a process used to approximation the solutions to equations, and to show that a root exists between two given values.

- spheres and cones, use to solve problems, include in terms of $\boldsymbol{\pi}$
- $\begin{array}{cccc} & \text{Solve problems involving} \\ & \text{more complex shapes and} \\ & \text{solids, including segments} \\ & \text{of circles and frustums of} \\ & \text{cones, include in terms of } \pi \\ \end{array}$
- Solve algebraic problems involving the surface area of spheres, cones, and frustums
- Know and use the angle at the centre is twice the angle at the circumference subtended from the same arc
- Know and use "The angle subtended by the diameter is 90°"
- Know and use "The angles in a cyclic quadrilateral sum to 180°"
- So Know and use "Angles in the same segment are equal"
- Know and use that "The tangent meets a radius at 90" and "Lengths of the tangents from a point to the circle are equal."
- Know and use "The alternate segment theorem"
- Select and apply the appropriate circle theorems to find missing angles.

0	Use a recurrence relation	0	Make use of circle theorems		High School
	given in the question to		when proving congruency	1	High School Michievement for all—
	approximate a root.	0	Perform transformations of	-	Achievement for all
0	Solve linear inequalities in		shapes, including		
	two variables graphically.		translation, rotation, and		
	Show the solution set of		reflection.		
	several inequalities in two	0	Enlarge a shape using a		
	variables on a graph		negative or fractional scale		
0	Solve quadratic inequalities		factor.		
	in one variable, by	0	Describe a transformation		
	factorising and sketching		using a single		
	the graph to find critical		transformation.		
	values.	0	Create loci and		
0	To construct and solve		constructions.		
	quadratic inequalities in				
	context				
0	Investigate the coefficients				
	of binomial expansions				
	using (a+b)^n				
0	Find possible values for				
	variables in expansions				
	given the coefficient and				
	knowledge of Pascal's				
	triangle				
0	Begin to estimate gradients				
	of curves by drawing				
	tangents				
0	Select two points on a curve				
	and calculate the gradient				
	of a the resulting chord,				
	reducing the distance				
	between them to estimate				
	the gradient.				
0	Develop a general rule for				
	differentiating polynomial				
	functions.				

0	Utilise understanding of the	High School This school
	laws of indices to	riigii scriooi
	differentiate functions with	Achievement for all
	roots and fractions	
0	Find the equation of a	
	tangent to a curve.	
0	Apply understanding of	
	gradient to determine when	
	a function is defined as	
	increasing or decreasing	
0	Find the second derivative	
	of a polynomial	
0	Use the derivative to find	
	the coordinates of a	
	stationary point	
0	To find the nth term	
	arithmetic sequence using	
	Un, a and d notation.	
0	Investigate the sum of n	
	terms in an arithmetic	
	sequence	
0	find the nth term of a	
	quadratic sequence	
0	Investigate the limiting	
	value of a sequence	