4.1.1 Basic organic chemistry

(a) application of ILIPAC rules of pamonelature for systematically naming organic compounds			
(a) application of IUPAC rules of nomenclature for systematically naming organic compounds (b) interpretation and use of the terms:			
(b) Interpretation and use of the terms: (i) general formula (the simplest algebraic formula of a member of a homologous series)			
e.g. for an alkane: CnH2n+2			
(ii) structural formula (the minimal detail that shows the arrangement of atoms in a molecule) e.g. for butane: CH ₃ CH ₂ CH ₂ CH ₃ or CH ₃ (CH ₂) ₂ CH ₃			
(iii) displayed formula (the relative positioning of atoms and the bonds between them) e.g. for ethanol:			
H H			
1 1			
н—с—с—о—н 			
(iv) skeletal formula (the simplified organic formula, shown by removing hydrogen atoms			
from alkyl chains, leaving just a carbon skeleton and associated functional groups) e.g.			
for butan-2-ol:			
р Р			
(c) interpretation and use of the terms:			
(i) homologous series (a series of organic compounds having the same functional group but			
with each successive member differing by CH ₂)			
(ii) functional group (a group of atoms responsible for the characteristic reactions of a			
compound)			
(iii) alkyl group (of formula C_nH2_{n+1})			
(iv) aliphatic (a compound containing carbon and hydrogen joined together in straight			
chains, branched chains or non-aromatic rings)			
(v) alicyclic (an aliphatic compound arranged in non-aromatic rings with or without side			
chains)			
aromatic (a compound containing a benzene ring)			
(vii) saturated (single carbon–carbon bonds only) and unsaturated (the presence of multiple			
carbon–carbon bonds, including C=C, CC /and aromatic rings)			
(d) use of the general formula of a homologous series to predict the formula of any member			
of the series			
(e) explanation of the term <i>structural isomers</i> (compounds with the same molecular formula			
but different structural formulae) and determination of possible structural formulae of an			
organic molecule, given its molecular formula			
(f) the different types of covalent bond fission:			
(i) homolytic fission (in terms of each bonding atom receiving one electron from the bonded			
pair, forming two radicals)			
i) (ii) heterolytic fission (in terms of one bonding atom receiving both electrons			
from the bonded pair)			
(g) the term radical (a species with an unpaired electron) and use of 'dots' to represent			
species that are radicals in mechanisms			
(h) a 'curly arrow' described as the movement of an electron pair, showing either			
heterolytic fission or formation of a covalent bond			
(i) reaction mechanisms, using diagrams, to show clearly the movement of an electron pair			
with 'curly arrows' and relevant dipoles.			

4.1.2 Alkanes

(a) alkanes as saturated hydrocarbons containing single C–C and C–H bonds as σ -bonds (overlap of orbitals directly between the bonding atoms); free rotation of the σ -bond			
(b) explanation of the tetrahedral shape and bond angle around each carbon atom in alkanes in terms of electron pair repulsion (see also 2.2.2 g-h)			

(c) explanation of the variations in boiling points of alkanes with different carbon- chain length and branching, in terms of induced dipole–dipole interactions (London forces) (see also 2.2.2 k)			
(d) the low reactivity of alkanes with many reagents in terms of the high bond enthalpy and very low polarity of the σ-bonds present (see also 2.2.2 j)			
(e) complete combustion of alkanes, as used in fuels, and the incomplete combustion of alkane fuels in a limited supply of oxygen with the resulting potential dangers from CO			
(f) the reaction of alkanes with chlorine and bromine by radical substitution using ultraviolet radiation, including a mechanism involving homolytic fission and radical reactions in terms of initiation, propagation and termination (see also 4.1.1 f-g)			
(g) the limitations of radical substitution in synthesis by the formation of a mixture of organic products, in terms of further substitution and reactions at different positions in a carbon chain.			

4.1.3 Alkenes

(a) alkenes as unsaturated hydrocarbons containing a C=C bond comprising a			
π-bond (sideways overlap of adjacent p-orbitals above and below the			
bonding C atoms) and a σ-bond (overlap of orbitals directly between the			
bonding atoms) (see also 4.1.2 a); restricted rotation of the π-bond			
(b) explanation of the trigonal planar shape and bond angle around each carbon in the C=C			
of alkenes in terms of electron pair repulsion (see also 2.2.2 g-h, 4.1.2 b)			
(c) (i) explanation of the terms:			
• stereoisomers (compounds with the same structural formula but with a different			
arrangement in space)			
• E/Z isomerism (an example of stereoisomerism, in terms of restricted rotation about a			
double bond and the requirement for two different groups to be attached to each			
carbon atom of the C=C group)			
• cis-trans isomerism (a special case of E/Z isomerism in which two of the substituent			
groups attached to each carbon atom of the C=C group are the same)			
(ii) use of Cahn–Ingold–Prelog (CIP) priority rules to identify the <i>E</i> and <i>Z</i> stereoisomers			
(d) determination of possible <i>E/Z</i> or <i>cis–trans</i> stereoisomers of an organic molecule,			
given its structural formula			
(e) the reactivity of alkenes in terms of the relatively low bond enthalpy of the π -			
bond			
(f) addition reactions of alkenes with:			
(i) hydrogen in the presence of a suitable catalyst, e.g. Ni, to form alkanes			
(ii) halogens to form dihaloalkanes, including the use of bromine to detect the presence of a			
double C=C bond as a test for unsaturation in a carbon chain			
(iii) hydrogen halides to form haloalkanes			
(iv) steam in the presence of an acid catalyst, e.g. H ₃ PO ₄ , to form alcohols			
(g) definition and use of the term <i>electrophile</i> (an electron pair acceptor)			
(h) the mechanism of electrophilic addition in alkenes by heterolytic fission (see also 4.1.1			
h-i)			
(i) use of Markownikoff's rule to predict formation of a major organic product in addition			
reactions of H–X to unsymmetrical alkenes, e.g. H–Br to propene, in terms of the relative			
stabilities of carbocation intermediates in the mechanism			
(i) addition polymerisation of alkenes and substituted alkenes, including:	1		
(i) the repeat unit of an addition polymer deduced from a given monomer			
(ii) identification of the monomer that would produce a given section of an addition			
polymer			
(k) the benefits for sustainability of processing waste polymers by:	İ		
(i) combustion for energy production			
(ii) use as an organic feedstock for the production of plastics and other organic chemicals			
(iii) removal of toxic waste products, e.g. removal of HC/ formed during disposal by			
combustion of halogenated plastics (e.g. PVC)			
	•		