Spec reference	Spec point	Additional guidance
Kinematics 3.1.1	Displacement, instantaneous speed, average speed, velocity and acceleration.	Define terms.
	Graphical representation: Displacement-time Velocity-time Acceleration time.	Gradient = velocity Gradient = acceleration; area under graph = displacement.
Linear motion 3.1.2	Equations of motion for constant acceleration in a straight-line including motion of bodies in a uniform gravitational field without air resistance (suvats)	$s = ut + \frac{1}{2}at^2$ v = u + at $v^2 = u^2 + 2as$ $s = \frac{1}{2}(u + v)t$ Possible derivation of the equations from a graph.
	Techniques and procedures used to investigate the motion and collisions of objects.	Light gates, data loggers, ticker tape, air track, video techniques.
	Acceleration of free fall (PAG 1.1) Techniques and procedures used to determine g using trap door method or light gates.	Evaluation: Introduction to graphical methods of determining constants (e.g. g). Determining percentage error in value. Uncertainty using line of worst best fit. Describing limitations.
Projectile motion 3.1.3	Independence of the horizontal and vertical components of velocity. Resolving a vector into two perpendicular components; $F_x = F \cos\Theta$ $F_y = F \sin\Theta.$	Introduction of the concept of resolution of vectors into components in the context of projectile motion. $v_V = v \sin \Theta$. $v_H = v \cos \Theta$

	Two-dimensional motion of a	Comparison of velocity/time
	projectile with constant velocity in	and displacement/time graphs
	one direction (i.e. horizontal and	representing each
	constant acceleration in the	component's motion.
	perpendicular direction.	
3.2.1 Dynamics	a) Net/resultant force = mass ×	Recall this equation!
	acceleration; F = ma	
	b) the newton as the unit of force	Force required for a mass of
		1kg to accelerate at 1ms ⁻²
	c) weight of an object; W = mg	Recall this equation also.
	d) the terms tension, normal	
	contact force, upthrust and	
	friction.	
	e) free-body diagrams	Construct and interpret.
	f) one- and two-dimensional	Vector triangles to calculate
	motion under constant force.	resultant force.
3.2.2 Motion	Drag as the frictional force	Laminar flow only.
with non-	experienced by an object	Laminal now only.
uniform		
acceleration	travelling through a fluid	
acceleration	Factors affecting drag for an	Speed, Area, viscosity of fluid
	object travelling through air	(PAG). Might be useful to
	Object travening through an	know that D =kAv ² where A =
	Motion of objects falling in a	cross-sectional area in contact
	uniform gravitational field in the	with the fluid, v = speed
	presence of drag	relative to the fluid and k is a
	i. terminal velocity	constant dependent on the
	i. terrimar velocity	physical nature of the fluid.
	ii. techniques and procedures	Description and explanation of
	used to determine terminal	how the forces acting change
	velocity in fluids.	during motion and how this
		affects the motion, resulting in
		terminal velocity.
		Stokes' law
		Stokes law

3.2.3 Equilibrium	a) moment of force b) couple; torque of a couple	Force x perpendicular distance from the pivot to the line of action of the force. Torque - a pair of forces in translational equilibrium, but not in rotational equilibrium. Net moment = one of the forces x their distance apart.
	c) the principle of moments	Condition for rotational equilibrium: the sum of the anticlockwise moments = the sum of the anticlockwise moments about a point/pivot.
	d) centre of mass; centre of gravity; experimental determination of centre of gravity	<u>Point</u> on an object where its mass appears to be concentrated.
	e) equilibrium of an object under the action of forces and torques	Comparison of systems in translational equilibrium (sum of forces = 0) and rotational equilibrium (sum of moments =0).
	f) condition for equilibrium of three coplanar forces; triangle of forces.	Drawing from scale or applying the idea of triangles (SOHCATOA, sine or cosine rule). NB/ These problems can also be solved by resolving forces/ taking components.

	\	
3.2.4 Density and pressure	a) Density; ρ =M/V;	Standard calculations. Density of a spherical ball, including calculation of uncertainties.
	b) Pressure; p =F/A; unit Pascal (Pa)	
	c) p = ρgh;	Pressure due to the column of water above a point immersed in a fluid.
	upthrust on an object in a fluid; Archimedes' principle.	"The upthrust experienced by an object either partially or wholly immersed in a fluid is equal to the weight of the fluid displaced." Analysis of free-body diagrams involving bodies falling through a fluid (weight, drag and upthrust) and the motion thereof. PAG = Stokes' Law
3.3.1 Work and	a) Work done by a force; the unit	Work done = Force x distance
conservation	joule	moved in the direction of the
of energy	b) $W = Fx \cos \Theta$ for work done by a force.	force. Force x component of displacement in the direction of the force.
	c) The principle of the conservation of energy d) energy in different forms. Energy transfers and conservation. e) energy transferred = work done.	Elastic (strain), chemical, KE, GPE, etc.

3.3.2 Kinetic and potential energies	a) KE of an object EKE = ½ mv ² b) GPE of an object in a uniform gravitational field. EGPE = mgh c) The exchange between GPE and KE.	Derivation from v ² = u ² + 2as (first principles). Derivation from first principles. The Earth's gravitational field is considered to be uniform close to its surface.
3.3.3 Power	a) Power: P = W/t; the unit the Watt. b) P = Fv c) Efficiency of a mechanical system: efficiency = \frac{useful output energy}{total input energy} \times 100\%	Derivation of this equation from first principles is expected (P = W/t = (F x d)/t; d/t = v)
3.4.1 Springs	a) tensile and compressive deformation; extension and compression b) Hooke's law c) force constant k of a spring or wire; F = kx d) (i) force—extension (or compression) graphs for springs and wires (ii) techniques and procedures used to investigate force—extension characteristics for arrangements which may include springs, rubber bands, polythene strips.	Meaning of each. Load Force α extension Useful comparison to m = F/a and R =V/I Gradient of Force against extension graph = k PAG – Springs in series and in parallel, leading to a derivation of Young's Modulus.
3.4.2 Mechanical properties of matter	(a) force–extension (or compression) graph; work done is area under graph	Hysteresis loops – heat loss in loading/unloading. Area = <u>average</u> force x extension

	(b) elastic potential energy; $E = Fx$; $E = kx^2$ (c) stress, strain and ultimate tensile strength (d) (i) Young modulus = $\frac{\text{tensile stress}}{\text{tensile strain}}$, $E = \frac{\sigma}{\varepsilon}$	Proportionality relationships: EPE α x ² Stress causes strain. Units of Stress (Pa), strain is unitless. Unit = Pa, and is a constant for a given material that obeys Hooke's law (metal wires).
	(ii) techniques and procedures used to determine the Young modulus for a metal	Use of equipment: micrometer, metre rule, Newtonmeter, need for long wires. Calculation using gradient of Force/extension or Stress/Strain graph.
	(e) stress–strain graphs for typical ductile, brittle and polymeric materials(f) elastic and plastic deformations of materials.	Identify graph and describe the behaviour. Breaking stress for a given material = a constant. Elastic behaviour as material returns to original length after load removed, whereas with plastic deformation, it is permanently deformed.
3.5.1 Newton's laws of motion	(a) Newton's three laws of motion	Newton's Third law, to include that the <u>nature</u> of the forces is the same, e.g., gravitational or electromagnetic.
	(b) linear momentum; p = mv; vector nature of momentum	A scalar x a vector = a vector. Units: kgms ⁻¹ or Ns
	(c) net force = rate of change of momentum; $F = \frac{\Delta p}{\Delta t}$	Understanding that F =ma is a special case useable if the mass remains constant.

	 (d) impulse of a force; impulse = FΔt (e) impulse is equal to the area under a force –time graph. 	Spreadsheet methods of calculating impulse by iteration Estimation of impulse from area under graph in non-linear Force against time graphs using counting of squares method.
3.5.2 Collisions	(a) the principle of conservation of momentum	For a closed system, the total momentum before an event = the total momentum after the event. A closed system is a group of objects that interact where no external forces act and no energy is lost.
	(b) collisions and interaction of bodies in one dimension and in two dimensions	Collisions may involve objects sticking together or bouncing off each other. For explosions, the total momentum before = total momentum after = 0. Link to Newton's 2 nd and 3 rd law involving impulse and momentum conservation.
	(c) perfectly elastic collision and inelastic collision.	2-D calculations involve the use of horizontal and vertical components of momentum that remain constant in all directions before and after an event. Elastic – the total <i>Kinetic</i> energy before an event = the total kinetic energy after the event.