3.2 Physical Chemistry 3.2.1 Enthalpy change

(a) explanation that same shaming regations are assembly in anthology shanges that			
(a) explanation that some chemical reactions are accompanied by enthalpy changes that are exothermic (ΔH , negative) or endothermic (ΔH , positive)			
(b) construction of enthalpy profile diagrams to show the difference in the enthalpy of		_	
reactants compared with products			
(c) qualitative explanation of the term <i>activation energy</i> , including use of enthalpy profile			
diagrams			
(d) explanation and use of the terms:			
(i) standard conditions and standard states (physical states under standard conditions)			
(ii) enthalpy change of reaction (enthalpy change associated with a stated equation, ΔrH)			
(iii) enthalpy change of formation (formation of 1 mol of a compound from its elements, ΔfH)			
(iv) enthalpy change of combustion (complete combustion of 1 mol of a substance, ΔcH)			
(v) enthalpy change of neutralisation (formation of 1 mol of water from neutralisation,			
Δ neut H)			
(e) determination of enthalpy changes directly from appropriate experimental results,			
including use of the relationship: $q = mc\Delta T$			
(f) (i) explanation of the term average bond enthalpy (breaking of 1 mol of bonds in gaseous			
molecules)			
(ii) explanation of exothermic and endothermic reactions in terms of enthalpy changes			
associated with the breaking and making of chemical bonds			
(iii) use of average bond enthalpies to calculate enthalpy changes and related quantities			
(see also 2.2.2 f)			
(g) Hess' law for construction of enthalpy cycles and calculations to determine indirectly:			
(i) an enthalpy change of reaction from enthalpy changes of combustion			
(ii) an enthalpy change of reaction from enthalpy changes of formation			
(iii) enthalpy changes from unfamiliar enthalpy cycles			
(h) the techniques and procedures used to determine enthalpy changes directly and			
indirectly.			
			•

3.2.2 Reaction rates

(a) the effect of concentration including the processor of good on the rate of a position in			
(a) the effect of concentration, including the pressure of gases, on the rate of a reaction, in			
terms of frequency of collisions			
(b) calculation of reaction rate from the gradients of graphs measuring how a physical			
quantity changes with time			
(c) explanation of the role of a catalyst:			
(i) in increasing reaction rate without being used up by the overall reaction			
(ii) in allowing a reaction to proceed via a different route with lower activation energy, as			
shown by enthalpy profile diagrams			
(d) (i) explanation of the terms homogeneous and heterogeneous catalysts			
(ii) explanation that catalysts have great economic importance and benefits for increased			
sustainability by lowering temperatures and reducing energy demand from combustion of			
fossil fuels with resulting reduction in CO ₂ emissions			
(e) the techniques and procedures used to investigate reaction rates including the			
measurement of mass, gas volumes and time			
(f) qualitative explanation of the Boltzmann distribution and its relationship with activation			
energy (see also 3.2.1 c)			
(g) explanation, using Boltzmann distributions, of the qualitative effect on the proportion of			
molecules exceeding the activation energy and hence the reaction rate, for:			
(i) temperature changes			
(ii) catalytic behaviour (see also 3.2.2 c).			

3.2.3 Chemical equilibrium

(a) explanation that a dynamic equilibrium exists in a closed system when the rate of the forward reaction is equal to the rate of the reverse reaction and the concentrations of reactants and products do not change			
<u> </u>	-		
(b) le Chatelier's principle and its application for homogeneous equilibria to deduce			
qualitatively the effect of a change in temperature, pressure or concentration on the position			
of equilibrium			
(c) explanation that a catalyst increases the rate of both forward and reverse reactions in an			
equilibrium by the same amount resulting in an unchanged position of equilibrium			
(d) the techniques and procedures used to investigate changes to the position of equilibrium			
for changes in concentration and temperature			
(e) explanation of the importance to the chemical industry of a compromise between			
chemical equilibrium and reaction rate in deciding the operational conditions			
(f) expressions for the equilibrium constant, Kc, for homogeneous reactions and			
calculations of the equilibrium constant, Kc, from provided equilibrium concentrations			
(g) estimation of the position of equilibrium from the magnitude of Kc.			