## 5.2.3 Redox and electrode potentials

| Redox                                                                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--|--|--|
| (a) explanation and use of the terms oxidising agent and reducing agent                                        |  |  |  |
| (b) construction of redox equations using half equations and oxidation numbers                                 |  |  |  |
| (c) interpretation and prediction of reactions involving electron transfer                                     |  |  |  |
| Redox titrations                                                                                               |  |  |  |
| (d) the techniques and procedures used when carrying out redox titrations including those                      |  |  |  |
| involving Fe <sup>2+</sup> /MnO <sub>4</sub> – and I <sub>2</sub> /S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> |  |  |  |
| (e) structured and non-structured titration calculations, based on experimental results of                     |  |  |  |
| redox titrations involving:                                                                                    |  |  |  |
| (i) $Fe^{2+}/MnO_4$ – and $I_2/S_2O_3$ <sup>2-</sup>                                                           |  |  |  |
| (ii) non-familiar redox systems                                                                                |  |  |  |
| Electrode potentials                                                                                           |  |  |  |
| (f) use of the term standard electrode (redox) potential, E <sup>o</sup> including its measurement using       |  |  |  |
| a hydrogen electrode                                                                                           |  |  |  |
| (g) the techniques and procedures used for the measurement of cell potentials of:                              |  |  |  |
| (i) metals or non-metals in contact with their ions in aqueous solution                                        |  |  |  |
| (ii) ions of the same element in different oxidation states in contact with a Pt electrode                     |  |  |  |
| (h) calculation of a standard cell potential by combining two standard electrode potentials                    |  |  |  |
| (i) prediction of the feasibility of a reaction using standard cell potentials and the limitations             |  |  |  |
| of such predictions in terms of kinetics and concentration                                                     |  |  |  |
| Storage and fuel cells                                                                                         |  |  |  |
| (j) application of principles of electrode potentials to modern storage cells                                  |  |  |  |
| (k) explanation that a fuel cell uses the energy from the reaction of a fuel with oxygen to                    |  |  |  |
| create a voltage and the changes that take place at each electrode.                                            |  |  |  |