Spec reference	Spec point	Additional guidance
4.1.1 Charge	(a) electric current as rate of flow	
	of charge; $I = \frac{\Delta Q}{\Delta t}$	
	(b) the coulomb as the unit of charge	Base unit is the Ampere (not Coulomb): 1C = 1As
	(c) the elementary charge e equals 1.6×10^{-19} C	Electron and proton have the same (but opposite charge).
	(d) net charge on a particle or an object is quantised and a multiple of e	
	(e) current as the movement of electrons in metals and movement of ions in electrolytes	In metals/conductors, electrons flow from negative to positive. In electrolytes, positive and negative ions flow.
	(f) conventional current and electron flow HSW7	Taken as form positive to negative.
	(g) Kirchhoff's first law; conservation of charge.	The <u>sum</u> of currents into a point/junction = the <u>sum</u> of currents out of the point/junction
4.1.2 Mean drift velocity	(a) mean drift velocity of charge carriers	Electrons' path hindered by positive ions in metals.
	(b) I = Anev, where n is the number density of charge carriers	Calculations involving volumes of (cylindrical) wires and numbers of free electrons to calculate electron density. $V = \pi r^2 L$ where $r = radius$ of wire, $L = length$.
	(c) distinction between conductors, semiconductors and insulators in terms of n.	n for insulators is very low, n for semiconductors is middling, and n for

		conductors is orders of magnitude larger.
4.2.1 Circuit symbols	(a) circuit symbols(b) circuit diagrams using these symbols	
4.2.2 E.m.f. and p.d	(a) potential difference (p.d.); the unit volt (b) electromotive force (e.m.f.) of a source such as a cell or a power supply (c) distinction between e.m.f. and p.d. in terms of energy transfer	The energy transferred per unit charge from other forms into electrical (EMF). The energy transferred per unit charge from electrical into other forms (potential
	 (d) energy transfer; V = Q/W; W = EQ (e) energy transfer eV= ½ mv² for electrons and other charged particles. 	difference). Data for electrons etc. on data sheet. This links with quantum physics etc. later on in the course.
4.2.3 Resistance	 (a) resistance; V = IR; the unit ohm (b) Ohm's law (c) (i) I-V characteristics of resistor, filament lamp, thermistor, diode and lightemitting diode (LED) 	Learners will also be expected to recall this equation. Vα I at constant temperature. Ohmic conductor: straight line through the origin. Resistance is constant (inverse gradient of the I-V
	(ii) techniques and procedures used to investigate the electrical characteristics for a range of ohmic and non-ohmic components. Investigating	characteristic). Filament light bulb: resistance increases with temperature caused by the increase in current – increased electronion collisions. Interpolation of graph to calculate R.

	components and analysing data using spreadsheet.	
	(d) light-dependent resistor (LDR); variation of resistance with light intensity.	Diode – infinite/very high resistance in reverse bias, initially high resistance until a particular p.d. applied, then resistance falls. Questions often focus on I-V characteristics (e.g. of a diode and an ohmic conductor) and the distribution of currents in series and parallel circuits (see Kirchhoff's laws) and interpolation of the graphs – see past paper questions.
4.2.4 Resistivity	(a) (i) resistivity of a material; the equation:	Definition: state the equation in word form.
	$R = \frac{\rho L}{A}$ (ii) techniques and procedures used to determine the resistivity of a metal.	Graphical method.
	(b) The variation of resistivity of metals and semiconductors with temperature(c) Negative temperature coefficient (NTC) thermistor; variation of resistance with temperature.	Relate to the relative value of n (free electron density). Where n increases rapidly with temperature, reducing the resistance. This will connect with potential dividers later.
		,

4.2.5 Power	(a) the equations P = IV, P = I ² R = and P = V ² /R	For components in series , where current is constant $P \alpha R (P = I^2R)$. For components in parallel , where V is constant for all components $P \alpha 1/R (P = V^2/R)$.
	(b) energy transfer; W = IVt	
	(c) the kilowatt-hour (kWh) as a unit of energy; calculating the cost of energy.	Definition: the <u>energy</u> <u>transferred</u> when a device with a power of 1kW operates for 1 hour = 3.6 x 10 ⁶ J
		Comparison with the Joule and electron-volt.
4.3.1 Series and parallel circuits	(a) Kirchhoff's second law; the conservation of energy.	The <u>sum</u> of potential differences dropped in a loop = <u>sum</u> of emfs of that loop.
	(b) Kirchhoff's first and second laws applied to electrical circuits	I teach this earlier than is sequenced here (along with Kirchhoff's 1st law).
	(c) total resistance of two or more resistors in series; $R = R_1 + R_2 + R_3$ (d) total resistance of two or more resistors in parallel; $I/R_T = 1/R_1 + 1/R_2 + 1/R_3$	Calculations of combined resistances.
	(e) analysis of circuits with components, including both series and parallel	This could include calculations involving combined resistances or methods involving analysing loops and solving for Kirchhoff's laws.

	(f) analysis of circuits with more than one source of e.m.f.	This once again involves solving for Kirchhoff's 1^{st} first (marking in currents) and then going round the loop using the 2^{nd} law ($\Sigma V = \Sigma$ e.m.f. and $V = IR$.).
4.3.2 Internal resistance	(a) source of e.m.f.; internal resistance	Internal resistance caused by the fact that current flows through the cell/supply-
	(b) 'lost volts';	leading to potential difference being dropped or 'lost' inside the cell/supply.
	Terminal p.d.	Terminal p.d is the remainder of the available p.d. dropped across the external components.
	(c) (i) the equations E = I (R + r) and E = V+ Ir	V = terminal p.d. I = the current r = internal resistance R = external circuit resistance. It is useful to see these equations fully in the context of Kirchhoff's laws. Descriptions of how V changes with I (caused by a change in R) in terms of the change in Ir.
	(ii) techniques and procedures used to determine the internal resistance of a chemical cell or other source of e.m.f.	V = -rl +E y = mx + C Graph of V against I Gradient = -r Y intercept = E
4.3.3 Potential dividers	(a) potential divider circuit with components	2 or more components in series with a supply divide/have a share of the

(b) potential divider circuits with variable components e.g. LDR and thermistor.

(c) (i) potential divider equations e.g.

$$V_{\text{out}} = \frac{R_2}{R_1 + R_2} \times V_{\text{in}} \text{ and } \frac{V_1}{V_2} = \frac{R_1}{R_2}$$

(ii) techniques and procedures used to investigate potential divider circuits which may include a sensor such as a thermistor or an LDR.

e.m.f. in accordance with their relative resistances.
Learners will also be expected to know about a potentiometer as a potential divider.

Discussion of the change in the share of the available p.d. - the larger the (relative) resistance, the greater its share of the available p.d.

Calculations will involve interpolation from graphs of Resistance against Temperature for a thermistor or Resistance against Intensity for an LDR.