5.1.1 How fast?

Orders, rate equations and rate constants			
(a) explanation and use of the terms: rate of reaction, order, overall order, rate constant,			
half-life, rate-determining step			
(b) deduction of:			
(i) orders from experimental data			
(ii) a rate equation from orders of the form: rate = $k[A]^m[B]^n$, where m and n are 0, 1 or 2			
(c) calculation of the rate constant, k, and related quantities, from a rate equation including			
determination of units			
Rate graphs and orders			
(d) from a concentration–time graph:			
(i) deduction of the order (0 or 1) with respect to a reactant from the shape of the graph			
(ii) calculation of reaction rates from the measurement of gradients			
(e) from a concentration—time graph of a first order reaction, measurement of constant half-			
life, t _{1/2}			
(f) for a first order reaction, determination of the rate constant, k, from the constant half-life,			
$t_{1/2}$, using the relationship: $k = \ln 2/t_{1/2}$			
(g) from a rate–concentration graph:			
(i) deduction of the order (0, 1 or 2) with respect to a reactant from the shape of the graph			
(ii) determination of rate constant for a first order reaction from the gradient			
(h) the techniques and procedures used to investigate reaction rates by the initial rates			
method and by continuous monitoring, including use of colorimetry			
Rate-determining step			
(i) for a multi-step reaction, prediction of,			
(i) a rate equation that is consistent with the rate-determining step			
(ii) possible steps in a reaction mechanism from the rate equation and the balanced			
equation for the overall reaction			
Effect of temperature on rate constants			
(j) a qualitative explanation of the effect of temperature change on the rate of a reaction and			
hence the rate constant			
(k) the Arrhenius equation:			
(i) the exponential relationship between the rate constant, <i>k</i> and temperature, <i>T</i> given by			
the Arrhenius equation, $k = Ae^{-Ea/RT}$			
ii) determination of E_a and A graphically using: In $k = -E_a/RT + In A$ derived from the			
Arrhenius equation.			
•			