5.2 Energy 5.2.1 Lattice enthalpy

(a) explanation of the term <i>lattice enthalpy</i> (formation of 1 mol of ionic lattice from gaseous			
ions, $\Delta_{LE}H$) and use as a measure of the strength of ionic bonding in a giant ionic lattice			
Born-Haber and related enthalpy cycles			
(b) use of the lattice enthalpy of a simple ionic solid (e.g. NaCl, MgCl ₂) and relevant energy			
terms for:			
(i) the construction of Born–Haber cycles			
(ii) related calculations			ı
(c) explanation and use of the terms:			
(i) enthalpy change of solution (dissolving of 1 mol of solute, $\Delta_{sol}H$)			
(ii) enthalpy change of hydration (dissolving of 1 mol of gaseous ions in water, △hydH)			i
(d) use of the enthalpy change of solution of a simple ionic solid (e.g. NaCl, MgCl ₂) and			
relevant energy terms (enthalpy change of hydration and lattice enthalpy) for:			
(i) the construction of enthalpy cycles			
(ii) related calculations			i
(e) qualitative explanation of the effect of ionic charge and ionic radius on the exothermic			
value of a lattice enthalpy and enthalpy change of hydration.			

5.2.2 Enthalpy and entropy

Entropy			
(a) explanation that entropy is a measure of the dispersal of energy in a system which is			
greater, the more disordered a system			
(b) explanation of the difference in magnitude of the entropy of a system:			
(i) of solids, liquids and gases			l
(ii) for a reaction in which there is a change in the number of gaseous molecules			
(c) calculation of the entropy change of a system, ΔS , and related quantities for a reaction			
given the entropies of the reactants and products			
Free energy			
(d) explanation that the feasibility of a process depends upon the entropy change and			
temperature in the system, $T\Delta S$, and the enthalpy change of the system, ΔH			1
temperature in the system, 120, and the entitalpy change of the system, 211			l
(e) explanation, and related calculations, of the free energy change, ΔG , as:			
$\Delta G = \Delta H - T\Delta S$ (the Gibbs' equation) and that a process is feasible when ΔG has			l
a negative value			l
(f) the limitations of predictions made by ΔG about feasibility, in terms of kinetics.			