Spec reference	Spec point	Additional guidance
4.5.1 Photons	(a) the particulate nature (photon model) of electromagnetic radiation	Determine the Planck constant using different coloured LEDs.
	(b) photon as a quantum of energy of electromagnetic radiation	Quantised packet of electromagnetic energy
	(c) energy of a photon; $E = hf$ and $E = \frac{hc}{\lambda}$	Photon energy E α f
	(d) the electron-volt (eV) as a unit of energy	The work done on an electron when it moves through a potential difference of 1V. 1 eV = 1.6×10^{-19} J (W = eV from p.d. equation).
	(e) (i) using LEDs and the equation: $eV = \frac{hc}{\lambda}$ to estimate the value of Planck constant h.	V = hc/e . $1/\lambda$ Plot V against $1/\lambda$ Gradient = hc/e Re-arrange to find h.
4.5.2 The photoelectric effect	(a) (i) photoelectric effect, including a simple experiment to demonstrate this effect	The photoelectric effect provides evidence for particulate nature of EM radiation. Light travels as wave but interacts with matter like a particle.
	(ii) demonstration of the photoelectric effect using, e.g. gold-leaf electroscope and zinc plate	Negatively charged zinc plate exposed to photons loses its charge when exposed to e.g. UV photons.

	(b) a one-to-one interactionbetween a photon and a surfaceelectron.(c) Einstein's photoelectric	One photon interacts with one electron transferring all its energy to the electron.
	equation $\mathit{hf} = \phi + \mathit{KE}_{max}$	Conservation of energy.
	(d) work function;	Minimum energy required to liberate a surface electron.
		No surface electron can be liberated unless the photon energy exceeds the work function.
	threshold frequency	No electron can be liberated unless the photon's frequency exceeds the threshold frequency. Φ = hf _{threshold}
	(e) the idea that the maximum kinetic energy of the photoelectrons is independent of the intensity of the incident radiation	Effect occurs even at low intensity with UV photons, but not when exposed to red light, even at very high intensity.
	(f) the idea that rate of emission of photoelectrons above the threshold frequency is directly proportional to the intensity of the incident radiation.	Intensity = Power/Area For photon exposure: Power = number of photons/second x photon energy.
4.5.3 Wave– particle duality	(a) electron diffraction, including experimental evidence of this effect.	Electron diffraction provides evidence for wave-like behaviour of particles.

(b) diffraction of electrons		
travelling through a thin slice of		
polycrystalline graphite by the		
atoms of graphite and the		
spacing between the atoms		
(c) the de Broglie equation		
h		

$$\lambda = \frac{h}{p}$$

Electrons travel as waves but interact with matter as particles.

The De Broglie wavelength of an electron with a momentum p.

Electron diffraction occurs if $\lambda_{DB} \approx$ Gap size between atoms in crystal $\approx 10^{-10} m$. Interference pattern a series of bright rings – gaps between maxima dependent on path difference and therefore λ_{DB}