## P8 Space

| 1 2 1 1 Our                      | Within our solar system there is one star, the Sun, plus the eight                                                                                                      | Green | Amber | Red |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|
| 4.8.1.1 Our solar system         | planets and the dwarf planets that orbit around the Sun. Natural satellites, the moons that orbit planets, are also part of the solar system.                           | Green | Amper | Neu |
|                                  | Our solar system is a small part of the Milky Way galaxy.                                                                                                               |       |       |     |
|                                  | The Sun was formed from a cloud of dust and gas (nebula) pulled together by gravitational attraction.                                                                   |       |       |     |
|                                  | Students should be able to explain:                                                                                                                                     |       |       |     |
|                                  | <ul> <li>how, at the start of a star's life cycle, the dust and gas<br/>drawn together by gravity causes fusion reactions</li> </ul>                                    |       |       |     |
|                                  | <ul> <li>that fusion reactions lead to an equilibrium between the<br/>gravitational collapse of a star and the expansion of a star<br/>due to fusion energy.</li> </ul> |       |       |     |
| 4.8.1.2 The life cycle of a star | A star goes through a life cycle. The life cycle is determined by the size of the star.                                                                                 | Green | Amber | Red |
|                                  | Students should be able to describe the life cycle of a star:                                                                                                           |       |       |     |
|                                  | the size of the Sun                                                                                                                                                     |       |       |     |
|                                  | much more massive than the Sun.                                                                                                                                         |       |       |     |
|                                  | Cloud of gas and dust (nebula)  Protostar  Stars about the same size as the Sun  Red giant  Red super giant  White dwarf  Black dwarf  Neutron star  Black hole         |       |       |     |
|                                  | → Black awaii                                                                                                                                                           |       |       |     |
|                                  | Fusion processes in stars produce all of the naturally occurring elements. Elements heavier than iron are produced in a supernova.                                      |       |       |     |
|                                  | The explosion of a massive star (supernova) distributes the elements throughout the universe.                                                                           |       |       |     |
|                                  | Students should be able to explain how fusion processes lead to the formation of new elements.                                                                          |       |       |     |

| 4.8.1.3                      | Gravity provides the force that allows planets and satellites                                                                 | Green | Amber | Red |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|
| Orbital                      | (both natural and artificial) to maintain their circular orbits.                                                              |       |       |     |
| motion,                      | Students should be able to describe the similarities and                                                                      |       |       |     |
| natural and                  | distinctions between the planets, their moons, and artificial                                                                 |       |       |     |
| artificial                   | satellites.                                                                                                                   |       |       |     |
| satellites                   | (HT only) Students should be able to explain qualitatively how:                                                               |       |       |     |
|                              | <ul> <li>(HT only) for circular orbits, the force of gravity can lead to<br/>changing velocity but unchanged speed</li> </ul> |       |       |     |
|                              | (HT only) for a stable orbit, the radius must change if the speed changes.                                                    |       |       |     |
| 4.8.2 Red-<br>shift (physics | There is an observed increase in the wavelength of light from most distant galaxies.                                          | Green | Amber | Red |
| only)                        | The further away the galaxies, the faster they are moving and the bigger the observed increase in wavelength.                 |       |       |     |
|                              | This effect is called red-shift.                                                                                              |       |       |     |
|                              | The observed red-shift provides evidence that space itself (the universe) is expanding and supports the Big Bang theory.      |       |       |     |
|                              | The Big Bang theory suggests that the universe began from a very small region that was extremely hot and dense.               |       |       |     |
|                              | Since 1998 onwards, observations of supernovae suggest that distant galaxies are receding ever faster.                        |       |       |     |
|                              | Students should be able to explain:                                                                                           |       |       |     |
|                              | Qualitatively, the red-shift of light from galaxies that are receding                                                         |       |       |     |
|                              | <ul> <li>that the change of each galaxy's speed with distance is<br/>evidence of an expanding universe</li> </ul>             |       |       |     |
|                              | <ul> <li>how red-shift provides evidence for the Big Bang mode</li> </ul>                                                     |       |       |     |
|                              | <ul> <li>how scientists are able to use observations to arrive at<br/>theories such as the Big Bang theory</li> </ul>         |       |       |     |
|                              | that there is still much about the universe that is not understood, for example dark matter and dark energy.                  |       |       |     |